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Recently, interest in combinatorial auctions has extended to include trade in multiple units of hetero-
geneous items. Combinatorial bidding is complex and iterative auctions are used to allow bidders to
sequentially express their preferences with the aid of auction market information provided in the form of
price feedbacks. There are different competing designs for the provision of item price feedbacks;
however, most of these have not been thoroughly studied for multiple unit combinatorial auctions. This
paper focuses on addressing this gap by evaluating several feedback schemes or algorithms in the context
of multiple unit auctions. We numerically evaluate these algorithms under different scenarios that vary
in bidder package selection strategies and in the degree of competition. We observe that auction out-
comes are best when bidders use a naı̈ve bidding strategy and competition is strong. Performance
deteriorates significantly when bidders strategically select packages to maximize their profit. Finally, the
performances of some algorithms are more sensitive to strategic bidding than others.
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1. Introduction

Combinatorial auction designs, which allow bidding on

single as well as packages of items, have been used to trade

different types of goods and services. These auctions

increase the flexibility with which bidders express their

choices. Bidders benefit from the opportunity to exploit

synergies between package items while the auctioneer bene-

fits from increased competition. Recently, these auctions

have been tested for multiple unit cases, where bidders are

able to combine several items or services each of which can

be offered at different levels. Potential application areas for

the auctions are many and include agriculture, conserva-

tion and development planning.

However, the wide strategy space in a combinatorial

auction can make bidding complex. Multiple unit combi-

natorial auctions are best conducted iteratively as a series

of rounds where bidders can progressively reveal their pre-

ferences through a sequence of revised bids. The bidding

process can then be facilitated through the provision of

pricing information to bidders based on intermediate

round bidding results. Often this pricing feedback is

provided in the form of anonymous linear or item prices

(hereafter termed item prices), where bundle prices are

equal to the value of the package calculated at the item

prices (Parkes, 2006). The item prices data are anonymous

because they are the same for all bidders. Different

algorithms for computing item price feedbacks have been

proposed (Pikovsky, 2008). Some of the notable algorithms

are the Resource Allocation Design or RAD (Kwasnica

et al, 2005), the smoothed anchoring (SmAnch) (Hoffman,

2006), the Data Envelopment Analysis (DEA) based

pricing algorithm (Aparicio et al, 2008) and nucleolus

algorithms (Dunford et al, 2007).

All of these algorithms are interesting, each with their

own particular advantages. However, these schemes

(excepting the DEA-based algorithm) have not yet been

tested for cases where the items or services auctioned can

be offered at different levels. It should be noted here that

there are alternative item price feedback-based mechanisms

such as Clock Combinatorial auctions and ALPSm, which

have been tested in a wide range of scenarios (Pikovsky,

2008). However, to manage the scope of our work we have

concentrated only on selected algorithms that have not

been tested for multiple unit reverse combinatorial auc-

tions. Such multiple unit combinatorial auctions could

significantly increase the complexity of the package selec-

tion problem for bidders, since bidders have to take into

account not only the economies of scope (cost synergies)

among different services but also the economies of scale

arising from providing items/services at different possible

levels. For example, if a bidder is capable of providing up

to three services/items and each of those services could be
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provided at three levels (including an option of not offering

the item), this bidder has 26 (33�1¼ 26) potential bundles

or packages that he/she should offer. That is, the selection

of suitable bids could be a complex and expensive task for

the bidder. Therefore, the success of a price feedback

algorithm depends on how effectively it provides market

information to guide the bidding towards the final

allocation.

We evaluate price feedback algorithms in auction market

scenarios that vary in two important aspects, namely,

bidder package selection rules and the degree of competi-

tion. The package selection strategy determines the capa-

city of the bidder to process market signals and determines

the type and number of bids submitted by a bidder. On the

other hand, it is expected that auction efficiency would

increase with competition. This study aims to provide

information on price feedback designs that perform consis-

tently against different package selection strategies and

competition scenarios. This knowledge would help auction-

eers to choose designs that improve auction outcomes.

In the next section, we describe iterative combinatorial

auctions, including the winner determination problems

and the provision of price feedbacks. We then present the

details of our numerical experiments, including the struc-

ture of the packages offered, the package selection stra-

tegies used by bidders, the competition scenarios explored

and the performance measures employed. Section 4

presents and discusses the results. The paper is summarized

and conclusions drawn in Section 5.

2. Iterative combinatorial auctions

In natural resource management and in many other pro-

curement problems, multiple unit combinatorial auctions

are more relevant than auctions for unique items. For

example, a landholder is capable of undertaking conserva-

tion activities to conserve different population sizes of

different species. That is, different bids from a landholder

could offer different levels of conservation services for a

given species, possibly in combination with services that

benefit another species. The objective of the auctioneer is to

select the bids that would meet the conservation target

while minimizing procurement costs. This selection pro-

blem is known as the winner determination problem

(WDP) and is formally described below.

Let us assume that the auctioneer is aiming to purchase

multiple units of several items/services, sayU¼ {u1, u2, . . . ,

ug}, ukARþ. Assume that there are N bidders, {1, 2, . . . ,

N}, participating in the auction. Each bidder submits a set

of bids, Ai¼ {Ai1,Ai2, . . . ,Aim}, where jth bid from bidder

i, Aij, conveys the information on the bid price pij and the

set of individual items (lij
1, lij

2, . . . , lij
g) offered, with lij

k
X0

denoting the number of units of item k included in the bid.

The auctioneer’s WDP is the following constrained cost

minimization problem:

Z ¼ min
XN
i¼1

Xm
j¼1

pijxij

s:t:
X
i;j

lkijxijXukX
i

xijp1

xij 2 f0; 1g ðWDP 01Þ

where Z is the minimized procurement cost of meeting the

purchase target U, and xij is a binary variable indicating

whether bid j from bidder i has been selected (xij¼ 1) or not

(xij¼ 0). The first constraint states that the selected set of

bids collectively satisfy or meet the auctioneer’s target

demand. The second constraint,
P

i xijp1, ensures that at

most one package is purchased from each bidder. An

auction with this feature is said to be an XoR bidding (Xia

et al, 2004). The third constraint ensures that there is no

fractional selection, that is, a bid is successful in its entirety

or not at all.

Bidders face the challenge of expressing their preferences

for different combinations of items. Iterative formats lessen

some of the preference elicitation problem by allowing

bidders to incrementally reveal their choices during the

course of the auction (Aparicio et al, 2008). In a round-

based iterative auction bidding opportunities are provided

in the form of distinct rounds. During a round, a set of

bids are first submitted. The auctioneer then computes the

WDP results. The auctioneer also runs a feedback price

computation algorithm. These price feedbacks are then

provided to the bidders as indications of item prices

implied by the bids submitted in the previous round. A

new round is then started and, subject to some activity

rules, bidders revise their bids and submit offers again. The

auction ends when a termination rule is satisfied and a final

allocation is made with winners in this last round obtaining

contracts. The termination rule could be based on a maxi-

mum number of rounds.

In this paper, we are interested in price feedbacks given

as item prices, rather than as a bundle or as package prices,

since item prices can be easily adapted to multiple unit

auctions and are also easier to understand for bidders. A

compatible set of item prices should explain or rationalize

results from the WDP allocation. That is, ideally, the item

prices provided as feedback would be such that the

computed values of winning (losing) packages are not

smaller (greater) than their respective bid prices (Iftekhar

et al, 2011). However, it has been shown that a set of prices

could be compatible with the solution from the WDP if

and only if integer requirements are redundant, that is, if

the LP relaxation of the problem generates an integer

solution (Bikhchandani and Mamer, 1997). Since combi-

natorial auctions mostly deal with complementary items, it
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can be difficult to find a set of compatible prices that

rationalize the WDP solution as described above. There-

fore, different post-processing heuristics or item price

calculation algorithms have been designed with the goal of

approximating the solution from the WDP as closely as

possible.

We focus on a closely related set (six) of anonymous

linear price feedback algorithms that approximate market

clearing prices. These include the linear and nonlinear

variants of RAD, the smoothed anchoring algorithm, two

nucleolus-based algorithms, and a DEA-based algorithm.

The mathematical details of these algorithms are pro-

vided in Appendix A. Price information produced by these

algorithms reflects the bidding strategies adopted by

bidders in the previous round. As a consequence, bidders

have the potential to influence both the market allocation

and the information feedbacks by bidding strategically

(Kagel et al, 2010). We test the performances of the price

feedback algorithms for different bidding strategies. Where

only a single activity rule is implemented, that is, during the

intermediate rounds, the provisional winning bids are

carried forward to the next round. Results from this study

would be useful in understanding bidders’ strategic behav-

iour when more rigid market structure (such as clock

combinatorial auction) are tested in future studies on com-

binatorial conservation auctions.

3. Computational experiments

The structure of our experiments is motivated primarily by

conservation auctions, where landholders submit bids to

win contracts to undertake projects that deliver conserva-

tion services. The key features of our numerical experi-

ments are described below.

3.1. Package structure

There are a range of intervention activities that a bidder

can undertake to obtain a certain level of conservation

outcome. The activities can be combined in different ways

and the cost of achieving an outcome depends on how

optimally these interventions are chosen and combined.

We use a bioeconomic model developed by Iftekhar et al

(2009) to determine optimal cost functions for bidders. The

model estimates optimal costs for conserving different

population sizes of three endangered native species (red-

tailed phascogale (Ph), carpet python (Py) and malleefowl

(M)) that are found in the wheatbelt region of Western

Australia. For each species we have considered three

possible levels of population size outcomes. A landholder

could propose packages on any combination of these

levels. Therefore, a landholder has 26 possible packages

that they could offer (ie, 33�1). The population outcomes

levels as well as the optimal bidder costs are shown in

Figure 1.

3.2. Bidder package selection strategies

How should a bidder determine the packages he/she

offers for the next round? Different kinds of package

selection strategies have been explored in the literature.

For example, in the context of combinatorial auctions for

lane procurement by truckload transportation service

providers, Song and Regan (2003) developed a model that

uses optimization-based methods to select lanes on which

to bid. Later, Lee et al (2007) proposed another carrier

optimization model and their results indicate that carriers

can benefit by using optimization-based lane selection

methods. An et al (2005) observed bidding behaviour

in real-world single round transportation auctions, where

carrier companies bid for contracts on lanes in a trans-

portation network. They observed that bidders employed

some alternative package selection strategies, including: (1)

select only individual lanes, (2) combine only high value

lanes, (3) select lanes competitively, (4) mix up high and

low value lanes and (5) bundle only lanes with geographic

proximity. Motivated by such observations, in their

simulations they used three bundle selection strategies that

correspond to strategies (1), (2) and (3) above, respectively,

and which they refer to as Naive Strategy, Internal-Based

Strategy (INT), and Competition-Based Strategy (COMP).

In an experimental study, Park and Rothkopf (2001)
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Figure 1 Conservation costs for 26 different combinations of
malleefowl (M), phascogale (Ph) and python (Py) population
outcomes. Conservation costs (x-axis) and population outcomes
(y-axis) are defined over a 10-year planning horizon.
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observed that many bidders try to manipulate competition

by withholding bids that are complementary to the existing

bids of their competitors. Bidders with high synergy value

packages usually bid aggressively to win synergistic pack-

ages, while avoiding bidding on single items or overlapping

packages.

Pikovsky (2008) studied bundle selection strategies using

computational experiments for single-item iterative combi-

natorial auctions. He investigated several bundle selection

strategies, including bestResponse, PowerSet, Item bidding1

and heuristic PowerSet bidding. Item bidders bid only

on individual items while bestResponse and PowerSet

bidders evaluate all possible bundles. Different types of

heuristic PowerSet bidders implement heuristics which

might closely resemble real bidders. It was found that

bidding on only single items (item bidding) led to loss of

efficiency. The PowerSet bidder strategy was found to be

best in terms of efficiency outcomes. The auctions with

bestResponse bidders achieved significantly lower revenue

than other auctions, except for auctions dominated by item

biddings. In summary, both real-world observations and

previous studies on package selection indicate that alter-

native bidding strategies need to be considered when

evaluating auction performance.

In this study, we consider the following bidder package

selection strategies. In each case, the surplus expected for a

package is computed by taking the item feedback prices as

indicative item prices.

K bestResponse bidding (BR): This strategy is also known

as myopic bidding, straightforward bidding or bidding

the gradient (Ausubel and Milgrom, 2002). bestResponse

bidding has been used by Parkes (2005), Chen and

Takeuchi (2005), Parkes and Kalagnanam (2005),

Kwon et al (2005) and Pikovsky (2008). bestResponse

bidders bid ‘straightforwardly’, offering the package

that has the highest expected surplus, which is measured

as the gap between the actual cost of the package and

its computed value at current (feedback) prices.

K PowerSet bidding (PS): The PowerSet bidder evaluates

all possible packages in each round, and submits bids

for all packages with positive expected surplus. Power-

Set bidding is also known as limited straightforward

bidding (Pikovsky, 2008).

K Constrained PowerSet bidding (CPS): In constrained

PowerSet bidding, the bidder anchors on the best-

Response package to identify other suitable packages, say,

within 50% range of the value of the expected surplus of

the anchored package. This strategy will allow bidders

to reduce their bidding costs by focusing on a fewer

number of packages compared with PowerSet bidders.

Similar strategies have been adopted by Ausubel and

Milgrom (2002) and Pikovsky (2008).

K Heuristic PowerSet bidding (HPS): HPS bidders ran-

domly select around half of the PowerSet bids. Therefore,

while CPS bidders would select a subset of PowerSet bids

with the highest expected surplus, HPS bidders might

select bids with a low expected surplus. This strategy is

appropriate when bidders are either not fully confident

about the current market information or are motivated

by factors other than profit maximization.

K Naı̈ve bidding (NV): A naive bidder submits bids on all

possible combination of items, regardless of expected

surplus. Performances of different bundling strategies

are often compared against the efficiency achieved by

naı̈ve bidders.

When the auction starts, all types of bidders (except

naı̈ve bidders) randomly select a subset of packages to start

with. After the initial round, bidders rely on the results

from the preceding round to revise their choice of

packages. For example, provisional winning bidders would

resubmit their provisionally winning packages in the

following round. Losing bidders would select packages

according to their respective package selection strategy.

The bid price revision between rounds relies on the item

price feedbacks provided by the auctioneer. The feedback

prices are used in an Experience Weighted Attraction

(EWA) learning algorithm (Camerer, 2003) to set prices for

the next round. The EWA learning allows bidders to

compare expected payoff for the full set of pricing

strategies before selecting an optimal one. The details of

the EWA algorithm are presented in Appendix B.

3.3. Degree of competition

We test the price feedback designs for three different levels

of competition. Competition is varied by changing the

degree of rationing (DR) which is defined as the percentage

of bidders who could supply the target demand in an

optimal allocation where contracts are offered to the least

cost providers. For example, DR20 means that the target

demand has been set in such a way that 20% of the bidders

could meet the target. Similarly, DR40 means that 40% of

the bidders could satisfy the demand. The higher the

percentage of bidders included in the optimal allocation

that would satisfy the target demand, the lower the degree

of competition. The three competition levels along with the

target demand structure are described in Table 1. As a

reference, the last column indicates the least cost (socially

efficient) way of meeting the target demand. The socially

efficient allocation occurs when services are sourced from

the most efficient sources and provides a good benchmark

for measuring auction allocative efficiency as discussed later.

1In the original paper they refer to this bidding strategy as naı̈ve

bidding. But to avoid confusion we refer to it as item bidding since

bidders could bid only upon individual items.
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In all our computational experiments, we use a

population of 20 bidders who are homogeneous in cost

structure and bidding strategy. Homogeneity in the bidder

population has helped us to concentrate on the perfor-

mance of the designs under different package selection

rules without worrying about the effects of heterogeneity in

bidder cost structures. Each auction simulation is run for

200 rounds. This number was chosen because we found

that it was long enough for convergence under all schemes.

All the simulations have been replicated 200 times to

smooth out the effect of randomness in the initial package

and price selection strategies. Reported results are based on

the averages values from these replications.

3.4. Performance measures

The following three criteria are used to evaluate auction

outcomes: allocative efficiency, rent extraction and speed of

convergence. Allocative efficiency (AE) refers to the degree

to which the cost of procurement is minimized. AE is

maximized when the auction selects the least cost sources to

meet the target (Pekeč and Rothkopf, 2003). AE is mea-

sured as the ratio of the least possible cost to the actual cost

of procurement. The degree of rent extraction (RE) esti-

mates the amount of overpayment to the winning bidders.

RE measures the proportion in bidder revenue of pure rent

(revenue over cost) earned by bidders. Values above zero

indicate the presence of rent extraction. The speed of

convergence is measured as the number of rounds (Round)

required for the RE value to converge on its final level.

4. Results and discussion

We use regression analyses to summarize the implications

for the results for the relationship between auction features

and performance measures. The analyses relate each of our

auction performance indicators (namely AE, RE and

Round) to the following three sets of auction features:

(1) auction price feedback designs (represented by dum-

mies for ConsNuc, Nuc, RAD LP, RAD NLP,

SmAnch and DEA-based algorithm, with RAD NLP

used as the benchmark);

(2) degree of rationing (represented by dummies for

DR20, DR40 and DR60, with DR60 used as the

benchmark); and

(3) bidder package selection strategy (represented by

dummies for BR, CPS, HPS, PS and NV, with BR

used as the reference category).

Coefficient estimates for the different outcome regres-

sions are presented in Table 2 and discussed in the following

sub-sections starting with the auction efficiency outcomes.

4.1. Auction outcomes: efficiency and rent extraction

In general, efficiency outcomes are considered as the key

criteria for measuring performance. The results summar-

ized in the table show that both allocative efficiency (AE)

and rent extraction (RE) are significantly affected by price

feedback design, bidder package selection strategy and the

degree of rationing (or degree of competition). Auctions

with lower degrees of rationing (or lower levels of target

demand) achieve higher degrees of efficiency outcomes.

For example, allocative efficiency is increased by 3.00

percentage points and the rate of rent extraction is reduced

by more than 6.00 percentage points when the degree of

rationing in an auction is reduced from high (DR60) to low

(DR20) (see last two rows of coefficients in Table 2). These

indicate that it is more difficult for the algorithms to find

an optimal allocation or minimize rents in low competition

environments or when the target demand is large.

The coefficient estimates for the price feedback algo-

rithm dummies indicate that auctions based on the

SmAnch and ConsNuc algorithms achieve higher alloca-

tive efficiency than any other algorithms. This is followed

by the performance of DEA-based auction designs.

Similarly, the rate of rent extraction was lowest when the

auctioneer employed SmAnch- and ConsNuc-based auc-

tion designs (Table 2). For example, an auction based on

the SmAnch algorithm achieves 0.60 percentage points

higher allocative efficiency compared with an auction based

on a RAD NLP algorithm. Similarly, the degree of rent

extraction will be minimized by 0.60 percentage points if an

auctioneer uses a SmAnch algorithm instead of a RAD

NLP algorithm. As noted in the appendix (Appendix A),

the SmAnch algorithm solves a one-step linear optimiza-

tion to reduce the total sum of slack variables for the losing

bids. Once the total amount of infeasibility is found, it runs

a separate optimization to reduce the fluctuations in prices

between two consecutive rounds. This reduction in price

signal fluctuations might have helped the algorithm to

achieve high allocative efficiency since strongly fluctuating

item prices can confuse bidders and misguide them in their

bid formulation and revision. The ConsNuc algorithm

does not have any such ‘price balancing’ optimization.

Instead, it allows the slack variables freedom to take either

positive or negative signs. Probably, this feature has helped

Table 1 Composition of demand targets used to generate
different levels of bidder competition

Degree of rationing
(% of bidders in
optimal allocation)

Composition of
target demand

Optimal cost
(million $)

Malleefowl Phascogale Python

DR20 (20) 160 160 16 1.446
DR40 (40) 320 320 32 2.893
DR60 (60) 480 480 48 4.339

MS Iftekhar et al—Choice of item pricing feedback schemes 5



ConsNuc to explore more pricing options faster and

achieve higher allocative efficiency.

The results also show that auction outcomes vary

depending on the package selection strategies of the bidder

population. The higher the number of packages offered by

a bidder type, the better the efficiency outcomes. Allocative

efficiency is highest for auctions with naı̈ve bidder (NV)

types and this is followed by estimates for auctions with

PowerSet bidders (PS), constrained PowerSet (CPS)

and Heuristic PowerSet (HPS) bidder types, respectively.

Lowest allocative efficiency was achieved in auctions

when bidders adopt bestResponse (BR) package selection

strategy. For example, an auction with NV bidder type

achieves 3.00 percentage points higher allocative efficiency

compared with an auction with BR bidder type (Table 2).

The results for allocative efficiency mirror those for rent

extraction: the degree of rent extraction is lowest for

auctions with naı̈ve bidders and this is followed by auctions

with PS, CPS and HPS bidder types. Rent payments were

highest for auctions where bidders adopted a bestResponse

strategy. An auction with NV bidder types minimizes the

degree of overpayment by 7.40 percentage points compared

with an auction with BR bidder types (Table 2).

Better efficiency outcomes for auctions with naı̈ve bid-

ders suggest that the auctioneer benefits from encouraging

bidders to submit bids on all possible combination of bids.

However, bidders are less interested in bidding on all

possible combinations since profits for winning bidders tend

to go down if the bidders adopt this strategy. Moreover, for

several reasons, it is not always possible for bidders to

evaluate all possible package types. Firstly, the cost of

package evaluation and bidding grows exponentially with

the increase in the number of packages under consideration.

Secondly, it does not make sense to bid on all packages in

every round in an iterative auction since bidders know that

they will get a chance to select new packages or revise their

bids on existing packages in future rounds.

However, power set bidding offers similar benefits with-

out bidders having to work through a large set of bids as in

naı̈ve bidding. PowerSet bidders bid only on packages that

have a positive expected surplus in any round. Therefore,

the strategy leads to a much lower number of packages

or offers compared with auctions with naı̈ve bidders.

However, since bidders select the packages strategically to

extract rent, PowerSet bidding leads to higher rent extrac-

tion compared with naı̈ve bidding. Two variants of Power-

Set bidding (namely, CPS and HPS) that limit the number

of packages or offers perform worse than PowerSet bidding

(Figure 2). Therefore, auctioneers might find the promotion

of PowerSet bidding interesting.

Bidders might be interested in other approaches. In

particular, the rent extraction estimates in Table 2 indi-

cate that winning bidders benefit most by adopting

bestResponse (BR) bidding strategy since this strategy

offers the best rents. There are several reasons for that.

Firstly, in BR bidding, bidders only submit package(s) with

the highest expected surplus in order to maximize expected

profit. Secondly, in BR bidding only a limited number of

Table 2 OLS regression results relating auction outcomes to auction features

AE RE Rounds

(Constant) 0.948*** (0.001) 0.111*** (0.002) 29.403*** (0.864)

Price feedback
ConsNuc 0.006*** (0.001) �0.006*** (0.002) 0.016 (0.886)
DEA 0.001 (0.001) 0.003** (0.002) 4.223*** (0.886)
Nuc �0.002** (0.001) 0.009*** (0.002) 1.634 (0.886)
RADLP �0.004*** (0.001) 0.012*** (0.002) 1.4 00 (0.886)
SmAnch 0.006*** (0.001) �0.006*** (0.002) 1.593* (0.886)

Package strategy
CPS 0.015*** (0.001) �0.048*** (0.001) 9.987*** (0.619)
HPS 0.012*** (0.001) �0.044*** (0.001) 31.538*** (0.622)
NV 0.029*** (0.001) �0.074*** (0.001) 4.331*** (0.616)
PS 0.021*** (0.001) �0.059*** (0.001) 11.397*** (0.619)

Degree of rationing
DR20 0.031*** (0.000) �0.061*** (0.001) �36.838*** (0.480)
DR40 0.027*** (0.000) �0.052*** (0.001) �25.187*** (0.481)

F-statistics 798.772*** 1009.702*** 840.160***
Adjusted R2 0.353 0.408 0.364
Number of observations 16 095 16 095 16 095

Note: *** and ** indicate significance at 1 and 5% level of significance, respectively. Numbers in parentheses are standard errors for the respective

coefficients.
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bids, in a round, are submitted. For example, compared

with PowerSet bidders, bestResponse bidders submit 60%

fewer bids, on average. With the submission of only select

packages, the auctioneer has a limited set of packages to

choose from. Feedback prices are based on these select

packages and might not convey information that promotes

more competitive bidding in subsequent rounds.

While the general trends discussed above indicate that

auction allocative efficiency (rent extraction rates) tend to

increase (decrease) with the number of packages offered by

a strategy, the outcomes can depend on price feedback

algorithms. Efficiency outcomes of some algorithms are

more sensitive to particular types of package selection

strategy (Figure 2). For example, the negative effect of the

use of bestResponse strategy on efficiency outcomes is

most acute for auctions based on the Nuc algorithm. In the

Nuc algorithm, winning bids are aggregated together to

calculate item prices (see Appendix A), whereas computed

values for individual winning bids could be below or above

their respective bids. With bestResponse bidding, there

is a possibility that only a limited number of packages

are included in the provisional winning combination.

Therefore, there is the possibility that there are large

differences between submitted package bid values and

package values computed at the price feedback offered by

the Nuc algorithm when the BR bidding strategy is

employed. These large discrepancies can lead to large

swings in the set of packages offered by bidders in the

subsequent round. That is, it is more difficult for the Nuc

algorithm to guide bidding towards an optimal allocation

when bidders use the BR strategy and offer a limited set of

packages in any given round.

On the other hand, the DEA-based algorithm has

allowed a higher degree of overpayment compared with

other algorithms when bidders use the CPS bidding

strategy. This is again related to the number of packages

submitted under each strategy. In DEA-based algorithms,

item prices are calculated in such a way that there is no

Figure 2 Average auction outcomes (AE, RE and Round) achieved by auction designs for different bidder types (BS) and different
degrees of rationing (DR).
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slack for losing bids and this results in a fewer number of

bids with positive surplus in every round compared with

other algorithms. Therefore, the CPS bidder submits a

fewer number of packages with DEA-based item prices

than under other types of item price schemes. This leads

to a limited number of packages for the auctioneer to

select from. This enables the CPS bidders to extract

more rent and the DEA-based auction design to miss the

optimal allocation. On the contrary, SmAnch and Con-

sNuc are less sensitive to changes in package selection

strategy compared with other algorithms. Therefore, on

average, these algorithms achieve higher efficiency out-

comes than other designs.

4.2. Speed of convergence

Simulation results indicate that the speed of convergence

for an auction increases with the increase in competition

strength (Table 2). For example, an auction with weak

competition (ie, DR60) would take 36 rounds more to

make a final allocation compared with an auction with

strong competition (ie, DR20). The speed of convergence is

also affected by bidder package selection strategies. This

effect is nonlinear. Convergence is faster if bidders either

submit only a few select bids (ie, adopt BR strategy) or sub-

mit bids on all possible packages (ie, adopt NV strategy). In

other words, the bidding strategy that offers the auctioneer

too few choices forces convergence almost as quickly as the

strategy which provides the full set of package options in

any given auction. In the first case, there is a lock-in effect,

with limited choices leading faster to convergence. In the

second case, the full set is explored and convergence is as

fast as one would expect. On the contrary, auctions with

HPS bidder types take longer to reach convergence. HPS

bidders not only submit fewer bids than some other types

(such as NV and PS) but also rely on a stochastic mecha-

nism to select those packages. Therefore, it takes even

longer to reach convergence with this bidder type.

Observing across price feedback algorithms, RAD NLP-

based auctions require a lower number of rounds to make

final allocation than other algorithms. For example, an

auctioneer can save 4.22 rounds making the final allocation

using an RAD NLP algorithm instead of a DEA-based

algorithm. Most other algorithms take almost the same

number of rounds as the RAD NLP to reach convergence

(Table 2). However, depending on the competition strength

in the auction, some algorithms may take longer to reach

convergence. From Figure 2, we observe that in the high

and medium competition environments (DR20 and

DR40), all algorithms behave similarly in terms of their

speed. All algorithms take a higher number of rounds for

auctions with HPS bidder type. In a low competition

environment (DR60), however, there is a greater variation

in speed across the individual algorithms.

5. Conclusion

In iterative multiple unit combinatorial auctions, the

selection of packages can be a complex problem for

bidders who have to choose from a wide set of packages.

Bidders will adopt package selection strategies that are

beneficial to them, with implications for auction outcomes.

On the other hand, the auctioneer is interested in finding

auction designs that perform consistently across different

auction environments. Therefore, in this paper we studied

the performance of several price feedback computation

algorithms for three different levels of competition and

for a set of package selection strategies that could be used

by bidders. The package selection strategies determine

how a bidder chooses which packages to submit in any

given auction round and range from a strategy where the

bidder focuses on offering a single package in a round

(bestResponse) to strategies where all potential packages

are offered by the bidder (a naı̈ve strategy).

We find that the performance of an auction design

depends on the package selection strategies adopted

by bidders. For example, if bidders use a naı̈ve bidding

strategy, allocative efficiency is higher than in an auction

where bidders are using a bestResponse strategy. Similarly,

naı̈ve package selection strategies minimize the degree

of rent extraction. Auction convergence, on the other hand,

is slowest if bidders adopt a heuristic power set bidding

(HPS) strategy which limits offers to a subset of the

packages that are likely to generate positive profits for the

bidder. The main implication of these findings is that the

auctioneer can benefit by promoting bidding strategies that

encourage or force bidders to submit more packages for

consideration. It might even be cost effective for the

auctioneer to provide financial and technical support to

bidders so that they are able to prepare bids on multiple

projects.

Finally, the auctioneer could readily benefit from

selecting a suitable price feedback design. Among the price

feedback computation algorithms we studied, smoothed

anchoring (SmAnch) and constrained nucleolus (ConsNuc)

algorithms performed best in terms of both allocative

efficiency and rent extraction rates. Further, the observed

efficiency outcomes for these algorithms are relatively

robust against changes in the package selection strategies

used by bidders. In summary, our results show how an

auctioneer could affect auction performance by the use of

price feedback designs and by the rules set for bidders with

regards to bidding strategies.
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Appendix A

We describe the basic principles of the different price

feedback algorithms below. These descriptions are based

on Iftekhar et al (2011).

A.1. The resource allocation design (RAD)

The RAD of DeMartini et al (1999) algorithms first focus

on finding a suitable set of slacks, and then on finding

an optimal set of prices. Slacks (dij) are a measure of the

distance between the computed value of a package and its

respective bid. (This gap is also called infeasibility gap or

duality gap.) There are two variants of the RAD procedure

which differ only in whether the slack minimization

procedure has a linear or nonlinear objective function.

The linear version of RAD (RAD LP) focuses on the

iterative minimization of the maximum of the slack values.

Let W and L¼B \W be the set of winning and losing bids,

respectively. gk is the item price for species kAK. In every

iteration (t) the maximum of the slack values is minimized

so that the computed value for packages in the winning

(losing) set of bids are not less than (not greater than) their

respective bids. Formally, for the t th iteration of this

minimization procedure, we solve the following:

min zt

subject toP
k

gkt l
k
ijXpij 8j 2WP

k

gkt l
k
ij � d̂ijppij 8j 2 Ĵt ¼ Ĵt�1 [ J�t�1;

J�t�1 ¼ fj 2 Ljz�t�1 ¼ dt�1ij gP
k

gkt l
k
ij � dijppij 8j 2 LnĴ

0pdijpzt 8j 2 LnĴ
gktX0

ðRAD 01Þ
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where gt
k is the feedback price for item k; lij

k is the number

of k items included in the package bid j from bidder i ; zt is

the maximum value of a slack (to be minimized); dij is the
slack for bid j from bidder i; J� is the set of losing bids

whose slacks have been minimized in the previous iteration

(t�1); and Ĵ denotes the subset of L bids whose slacks have

been already minimized in all previous iterations

(1, . . . , t�1). After every iteration the set of losing bids

with slack values equal to zt
� are moved into the set J�. Let

Ĵ ¼ Ĵ [ J� and permanently fix d̂ij ¼ d�t�18j 2 J�: This

process continues until one of the following conditions is

satisfied: (1) there is no slack in any of the losing bids

(ie, zt
� ¼ 0); (2) all the slacks have a value equal to zt

�

(ie, d� ¼ z�); or (3) all losing bids are covered (ie, Ĵt ¼ L ).

In the nonlinear version of the Resource Allocation

Design (hereafter RAD NLP), the objective function to be

minimized is simply the sum of the squares of the slack

variables (dij). Therefore, this version does not involve

iterative minimization of slacks.

After finding a suitable set of slacks, both the linear

and nonlinear versions run a second linear optimization

procedure to iteratively reduce gaps among the item prices.

This is done to balance or evenly distribute the prices

among the items as far as possible (Goeree and Holt, 2010),

which would encourage the participation of smaller bidders

or bidders with interests on a subset of items (Kwasnica

et al, 2005). The price balancing optimization minimizes

the maximum item price sequentially while keeping fixed

the slack variables obtained from RAD 01. Let dij ¼ d̂ij.
Formally,

min Yt

subject toP
k

gkt l
k
ijXpij 8j 2W

P
k

gkt l
k
ij � dijppij 8j 2 L

gktpYt 8k 2 KnK̂t

gkt ¼ ĝkt 8k 2 K̂t ¼ K̂t�1 [ eKt�1;

eKt�1 ¼ fk 2 K jY�t�1 ¼ gk
�

t g

ðRAD 02Þ

where K is the full set of item prices; K̂t is the

set of item prices that have already been minimized

in all previous iterations (1, . . . , t�1); eKt�1 is the

set of item prices minimized in the previous itera-

tion (t�1). After every iteration, the set of mini-

mized prices (ie, Y�t¼ gk�) are moved into a set K̂t. Let

K̂t ¼ K̂t�1 [ eKt�1 and kept permanently fixed. The

procedure is complete when prices for all items have

been sequentially minimized (K̂ ¼ K). The prices

obtained from the final iteration are our desired RAD

prices.

A.2. Smoothed anchoring approach (SmAnch)

The smoothed anchoring scheme was first tested by the US

Federal Communications Commission (FCC) for spectrum

auctions (Kwerel and Rosston, 2000). In the SmAnch

algorithm, a two-step procedure is followed. In the first

step (SmAnch 01), similar to RAD NLP, a linear

optimization is solved to minimize the sum of the slack

variables (z�). Then in the second step a price balancing

optimization is solved to reduce fluctuations in prices

between rounds (SmAnch 02). Let gr�1
k be the optimal price

obtained in the previous round (r�1) for item k. Formally,

min Y

subject toP
k

gkr l
k
ijXpij 8j 2WrP

k

gkr l
k
ij � dijppij 8j 2 LrP

i

P
8j2Lr

dij ¼ z�

Y ¼
P
k

gkr � gkr�1
� �2

dijX0

gkr ; g
k
r�1X0

ðSmAnch 02Þ

In summary, this procedure is similar to the RAD NLP

procedure other than for the fact that: first, it starts by

minimizing the sum rather than the squared sums of slacks;

and, second, its second stage item price manipulation

involves anchoring prices on previous round item prices

while making sure that the item prices rationalize the

auction selection results from the previous round as shown

in the first two constraints to the above problem.

A.3. Nucleolus-based algorithms

The fourth and fifth algorithms studied for this paper are

the nucleolus (Nuc) and constrained nucleolus (ConsNuc)

algorithms which were developed by Dunford et al (2007)

for single unit combinatorial auction. These algorithms do

not involve explicit procedures for balancing prices across

items as in the RAD or the SmAnch. Instead, these algo-

rithms work simultaneously on an optimal set of slacks and

item prices. First, the maximum slack value is reduced

sequentially as in RAD. However, unlike in other algo-

rithms, the slack variables are allowed to take any (positive

or negative) sign. The absence of sign restriction may

generate more flexibility in how slacks and item prices are

selected.
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The Nuc algorithm has a feature that is a further

deviation from the RAD-based designs. In this algorithm,

packages in individual winning bids are combined. The

computed value of the combined bid is forced to be equal

to the minimized cost obtained from the winner determina-

tion algorithm (Z), while individual winning bids are free

to take computed or implied market values less than or

greater than their respective bids. Formally,

min zt

subject toP
i

P
j

P
k

gkt l
k
ij ¼ Z 8j 2WP

k

gkt l
k
ij � d̂ij ¼ pij 8j 2 Ĵt ¼ Ĵt�1 [ J�t�1;

J�t�1 ¼ jj
P
k

gkt�1l
k
ij � z�t�1 ¼ pij; 8j 2 L

� �
P
k

gkt l
k
ij � dijppij 8j 2 LnĴt

dijpzt

gktX0

ðNuc 1Þ

After every iteration, we separate the set of bids (Jt
�), for

which the computed value for a package minus the optimal

slack (z�) is equal to the respective bid. These bids are then

put into a global set Ĵt; Ĵt ¼ Ĵt�1 [ J�t�1. In the next

iteration, the slack minimization problem is solved for the

remaining of the losing bids. The process continues until

there is no slack (ie, z� ¼ 0) or all losing bids are covered

(ie, Ĵt ¼ L).

Similar to RAD LP and Nuc, the ConsNuc algorithm

focuses on iterative minimization of maximum slack.

However, the ConNuc has the constraint that the

computed values of all winning bids are at least as big as

their respective submitted bids. In other words, the Nuc

is that the first constraint (
P

i

P
j

P
k g

klkij ¼ Z; 8j 2W)

is replaced with the constraint
P

k g
klkijXpij8j 2W in

ConsNuc. The rest of the procedure is the same as in the

Nuc algorithm.

A.4. Data envelopment analysis-based approach (DEA)

The last algorithm is based on data envelopment analysis

(DEA). Aparicio et al (2008) have proposed this algorithm

for use in multiple unit forward combinatorial auctions.

Similar to the Nuc algorithm, the DEA-based procedure

aggregates all winning bids but differs in its approach

to price computation. Under a DEA scheme, the com-

puted value of the aggregated winning bids (ie,

z ¼
P

i

P
j

P
k g

klkij 8j 2W) is maximized subject to the

constraint that, for each losing or winning bid, the package

value computed at the item prices being optimized does not

exceed the submitted bid value for that package. Therefore,

for bids on the efficiency frontier, the computed values are

equal to their respective bids, whereas for inefficient bids,

the values are below the respective bid. For inefficient bids,

which might include winning bids, bidders can use the price

information to calculate how much they will have to reduce

their bids in order to stay competitive in the following round.

Appendix B

B.1. The EWA learning algorithm

In the EWA learning model, it is assumed that each bidder

has a set of 10 pricing strategies. Let sij
g
denote bidder i’s

gth strategy for pricing a package j. Each strategy defines a

multiplicative mark-up factor which is used to determine

the value or bid amount associated with that strategy, v(sij
g).

Selection of strategy sij
1 (ie, a mark up of 1 in our case) in a

round means that the bidder will bid her true cost for the

package. Thereafter, the value of the mark-up factor is

incremented by a factor of 0.1. Therefore, the selection of

the last (10th) strategy, sij
10, means that the bidder is

bidding 1.9 times of the actual cost for the package. This

upper range for mark-up was chosen to cover the full set of

plausible strategies (ie, a bidder would not have an optimal

strategy that is above 1.9 times of its cost in our case). It

has been assumed that in the first round, bidders randomly

select any one of the strategies for a package. In subsequent

rounds, the bidder uses the learning algorithm as described

in Ho et al (2008) to determine his/her bidding strategy.

The probability of choosing a pricing or mark-up

strategy depends on a numerical attraction qij
g(t) value

assigned to that strategy and the experience weight of the

bidder denoted by N(t). All bidders start the auction with a

prior experience weight, N(0) and an initial value for the

attractions qij
g(0) measures. The learning model updates

these values through the rounds and uses them as the basis

for selecting a pricing strategy in a round. Given a set of

attractions on the strategy set, the bidder uses a logit rule

to generate the probability of choice for the strategies.

It is easier to describe the details of the EWA learning

algorithm by reference to the set of rules in it, which are

shown in Equation (B.1) from Ho et al (2008).

NðtÞ ¼ f � ð1� kÞ �Nðt� 1Þ þ 1

qgijðtÞ ¼
f �Nðt� 1Þ � qgijðt� 1Þ þ dþ ð1� dÞ � I sgij ; sijðt� 1Þ

� �h i
� Rg

ij

NðtÞ
where

Rg
ij ¼

vðsgijÞ � vðs1ijÞ if CVijðtÞXvðsgi Þ
0 otherwise

(

p
g
ijðtþ 1Þ ¼ el�q

g
ij
ðtÞP

H el�q
h
ij
ðtÞ ðB:1Þ

In the first equation above, the experience weight is

adjusted as a function of a decay parameter, f and a

growth controller, k. The parameter f reflects the deprecia-

tion of past experience. The higher the value of f, the more
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the agent ‘remembers’ past experience. The parameter

k controls the rate at which attractions grow. Agents

with higher k would lock into a strategy more quickly.

The updated experience weight is then used to revise the

attractions.

As in reinforcement learning, attractions are updated by

adding a decayed lagged attraction to an (expected) payoff

for the strategy, experience weights are used to weight

lagged attraction and to normalize the new attraction level.

In the equation above, the bidder’s expected payoff from

adopting a strategy sij
g
in round t is denoted by Rij

g
. If the

expected payoff relates to a strategy that was actually used

(and this is captured by the indicator variable I(sij
g
, sij (t)),

then the entire payoff is used. However, if it relates to a

forgone payoff (and is thus just an indication of a potential

payoff ), then the value is discounted to reflect this by the

parameter d, which measures the sensitivity of the bidders

to foregone payoffs. The bidder will consider the expected

payoffs of its strategies, which will allow it to bid below or

equal to the market price of the package, CVij (t).

Finally, as indicated in the last part of the equation,

the updated attractions are mapped into a probability

function to determine the probability of choosing a

strategy, pij
g
(tþ 1), subject to the attraction sensitivity

parameter, l. The higher the sensitivity parameter, the

more responsive the bidder would be to the strategy with

maximum attraction weight.

Following Iftekhar and Hailu (2012), we have used the

following parameter values: 0.50 for f and k and 0.80 for

d and l. These parameter values are the same for all

bidders to ensure that the bidder populations do not

vary in terms of their learning in different experiments as

this is not the main focus of this paper. It has been

observed that selection of these values would enable

bidder agents to explore the market before selecting a

strategy. All types of bidders keep updating the

probabilities of all pricing strategies for all possible

packages using the available market information. This

has been done to tackle price selection problem in a

situation when it becomes profitable to submit a package

in an intermediate round which was never submitted

before in an auction. As mentioned above the provi-

sional winning bidders are not allowed to change their

winning bid prices in the following round, whereas the

losing bidders use the EWA learning algorithm to select

prices for revised set of packages.
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